
1

Individual Reflective

Secure Systems Architecture module covered a wide range of beneficial topics like:

• Introduction to Operating Systems and Secure Systems Architecture

• Modelling and Socket Programming

• Systems Engineering and Modelling

• The Scientific Method and its Role in Modelling Distributed Services and

Systems

• Current and Future Challenges of Operating Systems and Distributed Systems

• Security Testing of Distributed Systems

Attached is the document "Evidence" which displays screenshots of my module

contributions i.e., Initial post, PowerPoint presentation, project’s python scripts, etc.

Additionally, I had the opportunity to collaborate on a group project with three of my

peers. Our selected case study, (Kodali, et al., 2016), focused on a low-cost system

serving as a smart home security and home automation system. Our task was to create

a detailed proposal/design document (in unit 3), that would guide the development of

the system.

To ensure project’s success, we appointed a group leader and agreed on matters like:

communication methods (Google Drive, Zoom, WhatsApp, emails, GitHub), work

distribution, meeting schedules, etc.

The first part of the project, design document creation, I identified the case study risks,

potential vulnerabilities, mitigations, and designed UML diagrams. Evidence doc:

Figures 3-10, is a compilation of my findings from sources such as Abdullah et al.

2

(2019), Anand et al. (2020), etc. This increased my understanding of home security and

automation systems, including IoT devices, and their potential risks, such as

dependence on Wi-Fi, susceptibility to Denial-of-Sleep (DoSL) attacks, the effectiveness

of bandwidth limitations, among others.

I faced a challenge running an AD tool with Java. During one of our discussions, I

requested help from my team and one of them remotely guided me using TeamViewer.

The second part of the project, we created a python prototype system that

demonstrated the functioning and interaction between a simulated device and a

simulated controller, so as to investigate one of our hypothesis questions.

We faced a challenge due to our lack of coding experience, so we decided to first

research on it and held regular meetings (every 1-3 days) to share our findings.

Initially, we opted to use Django to design an application with 2-Factor Authentication

login, user registration and authorisation. After my peer completed the Django app, I

created a Docker image and container, and scanned it (Evidence doc: Figures 11-15).

However, after further research on IoT devices, since our app was not simulating any of

the home automation controls, I discovered that paho-mqtt open-source client libraries

for Python were more suitable for machine-to-machine communications (PyPi, N.D.). I

proposed this to my group and after their own research, we agreed to create a light

control prototype using paho-mqtt and then dockerized it later.

3

I designed a motion-simulated light control and performed manual and automatic tests

using pytest (Evidence doc: Figure 16), while my peers worked on other simulations,

security features, testing, dockerization, and documentation.

Although we did not investigate my hypothesis question “does the motion sensor device

and light control system function collaboratively to ensure secure communication and

operation of the system?”, Figures 17-18 in the Evidence document show a successful

connection return code (rc=0) using the MQTT protocol and a broker to ensure reliable

and secure message delivery. Additionally, the use of JSON encoding ensures easy

readability and understanding of the messages between the devices (Steve, 2022).

However, we chose to investigate my peer's hypothesis on authentication because it

provided in-depth analysis of one of the security features.

In terms of the development cycle, we followed an Agile development methodology and

I believe that we were able to work on the project in an organized, flexible way and

stayed on track and met our deadlines. At the same time, we could have used our time

well by not focusing too much on one task. While in testing, we were able to perform

both manual and automated tests on the connectivity, subscription, security, etc, - of the

simulation so as to ensure that it was functioning as expected.

Some of the biggest challenges that we faced as a team were time constraints and the

lack of enough learning materials on paho-mqtt on a Windows environment, therefore

making it difficult to successfully implement some of the security features including the

ones we had planned to implement in the project.

4

Despite of these difficulties, our collaborative and hardworking group was able to

implement key features, resulting in a functional project submission.

Generally, the whole experience has been very knowledgeable and eye-opening.

Moreover, I recognized the importance of good communication and collaborating with

team members so as to ensure that we were all working towards the same goals.

Moving forward, I will use the knowledge and experience gained from this project to

continue improving my technical and communication skills. I will also apply the lessons

learned from this experience to future projects, ensuring that I can contribute effectively

to development teams and deliver high-quality products that meet the set requirements.

References

Abdullah, T., Ali, W., Malebary, S. & Ahmed, A. A., 2019. A Review of Cyber Security

Challenges, Attacks and Solutions for Internet of Things Based Smart Home.

International Journal of Computer Science and Network Security (IJCSNS), 19(9), pp.

139-146.

Anand, P. et al., 2020. IoT Vulnerability Assessment for Sustainable Computing:

Threats, Current Solutions, and Open Challenges. IEEE Access, Volume 8, pp. 168825-

168853.

Borgini, J., 2021. Tackle IoT application security threats and vulnerabilities. [Online]

Available at: https://www.techtarget.com/iotagenda/tip/Tackle-IoT-application-security-

threats-and-vulnerabilities

[Accessed 2 February 2023].

5

Kodali, R. K., Jain, V., Bose, S. & Boppana, L., 2016. IoT based smart security and

home automation system. Greater Nodia, IEEE.

PyPi, N.D.. paho-mqtt 1.6.1. [Online]

Available at: https://pypi.org/project/paho-

mqtt/#:~:text=This%20code%20provides%20a%20client,.9%2B%20or%203.6%2B.

[Accessed 26 February 2023].

Steve, 2022. Python MQTT Client Connections– Working with Connections. [Online]

Available at: http://www.steves-internet-guide.com/client-connections-python-mqtt/

[Accessed 10 February 2023].

1

Screenshots of my Contributions in this Module

Figure 1: PowerPoint Presentation on Symbian Operating System

2

Figure 2: Initial Post

3

Figure 3: My Contribution to 1st Part of the Group Assessment (A)

Figure 4: My Contribution to 1st Part of the Group Assessment (B)

4

Figure 5: My Contribution to 1st Part of the Group Assessment (C)

Figure 6: My Contribution to 1st Part of the Group Assessment (D)

5

Figure 7: My Contribution to 1st Part of the Group Assessment (E)

Figure 8: My Contribution to 1st Part of the Group Assessment (F)

6

Figure 9: My Contribution to 1st Part of the Group Assessment (G)

Figure 10: My Contribution to 1st Part of the Group Assessment (H)

7

Figure 11: VS Code when Dockerizing the Django App

Figure 12: Docker Images of the Django App and its Snyk Test

8

Figure 13:The Snyk Test Results of the Django App's Docker Image

Figure 14: Docker Container of the Django App

9

Figure 15: Running the Django App's Docker Container

Figure 16: MQTT VS Code of the light control by motion folder.

Inclusive of the files: lightControl.py, motionDevice.py, running a pytest,
mosquitto.config, password and the docker files.

10

Figure 17: Running motionDevice.py script

Figure 18: Running lightControl.py script

	References

